

Analysis of the Variabilization of Airport Charges, in Germany

Marius Barbu (FHW Berlin) David Hörnle (FHW Berlin)

Research Workshop, Berlin, 23rd Jan 2009

Variabilization of Airport Charges, in Germany

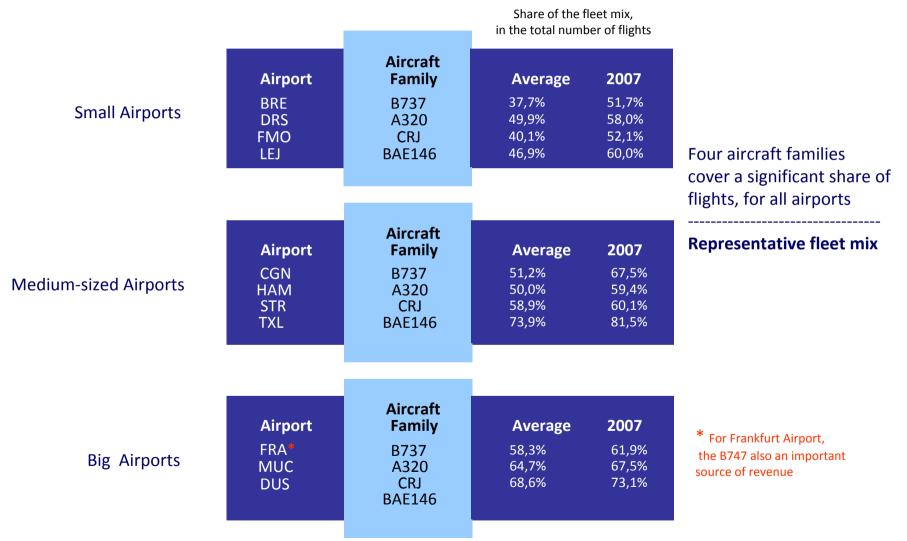
Outline

- Background
 - Deregulation
 - Sample of Airports
 - Fleet Mix
 - Variability, Trend and Levels
- Reasons
 - Airlines efficiency
 - Relative weight of aircrafts
 - Countervailing power of airlines
- Correlations
 - Scale
 - Congestion
 - Ownership (or Regulation?!)
 - Cost Structure
- Effects
- Conclusions

Background – Liberalization and Deregulation

- First, the Airlines
- Competition, survival
- Race to the bottom, cut costs
- Pressure on the airports
- Not only levels, but also structure important

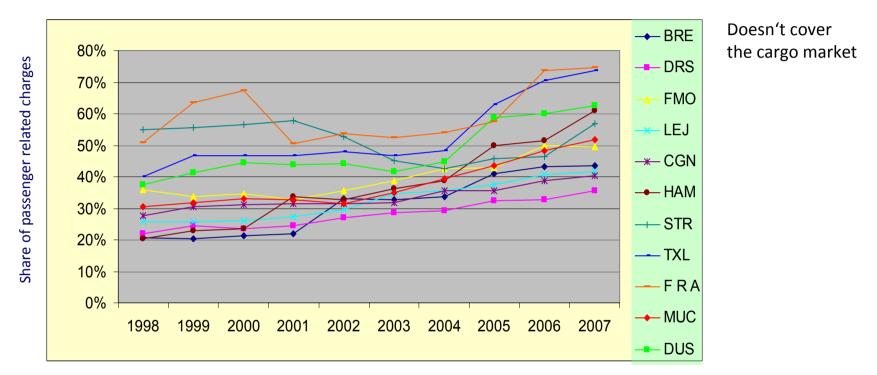
- Then, the Airports
- Some competition, but debate
- More business oriented
- Non-aviation revenues gain importance
- But still aviation revenues most important


Background – Sample of Airports

Airport	Passengers, 2007
FRA	54,161,856
MUC	33,959,422
DUS	17,831,248
TXL	13,357,741
НАМ	12,780,631
CGN	10,471,657
STR	10,321,438
НАЈ	5,644,582
LEJ	2,719,256
BRE	2,232,018
DRS	1,849,836
FMO	1,606,425
TOTAL	166,936,110

Source: ADV

Background – Fleet Mix

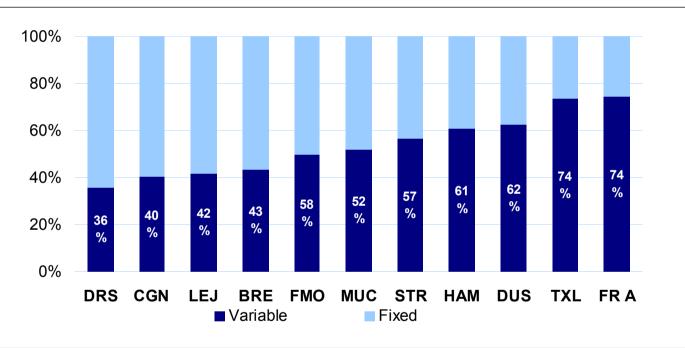


Source: Own calculations using data from Arbeitsgemeinschaft Deutscher Verkehrsflughäfen (ADV)

Background – **Definitions**

- <u>Variable</u> charges = passenger related charges
- <u>Fixed</u> charges = weight/aircraft related charges
- <u>Variability</u> = share of passenger related charges in total charges
- <u>Variabilization</u> = the process by which the share of passenger related charges is increasing

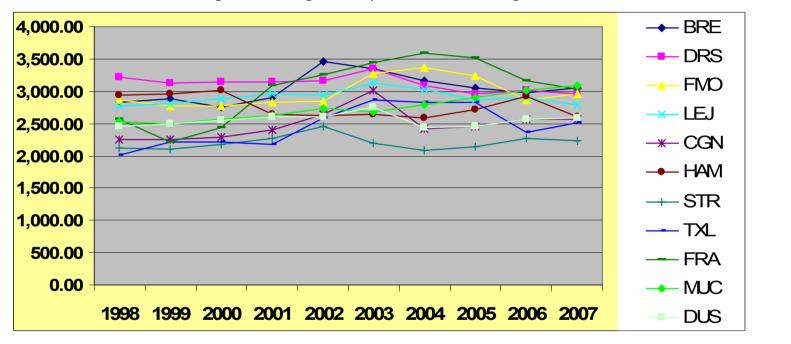
Background – Variability, Trends


Source: Own calculations using Published Charges Manuals Aircraft characteristics from manufacturer's official webpage

Assumptions: Seat Loading Factor = 80% Ground Handling was excluded

General trend towards variabilization

Background – Variability, Levels



2007

• Although it varies among different airports, the share of passenger related charges has reached already very high levels, for some airports

Background – Expensiveness, Trends

Weighted average costs per turn-around flight

• No significant price increase over the period

Reasons – Airline efficiency

Old More Weight based

- Passenger traffic [↑][↑]
 +
- Seat Load Factor ↑

New More Passenger based

- Passenger traffic [↑][↑]
 +
- Seat Load Factor ↑
 +
- Variable Charges ↑

Revenues **↑**

Revenues **^**

Reasons – Aircraft's weight

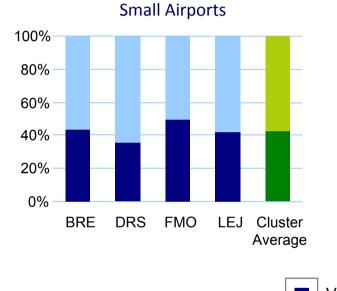
Assumption: Technological advancements made that aircrafts become lighter. Airports switched towards more passenger related charges to compensate for relative loses

Aircraft	Typical Seating	мтоw	Tonnes /Seat	Year of First Delivery	Aircraft	мтоw	Seats	Tonnes /Seat
A320	150	73.5	0.490	1987	Airbus A-300-600	172	267	0.64
A320 A321	185	83	0.449	1993	Airbus A-319-100	68	121	0.56
A319	124	64	0.516	1995	Airbus A-320-100	68	145	0.30
A318	107	59	0.551	2002	Airbus A-321-100 Airbus A-321-200	93 89	145 173	0.64 0.51
A330/300	335	230	0.687	1993		•••		
A330/200	293	230	0.785	1997	Boeing B737-300 Boeing B737-500	67 62	118 <mark>99</mark>	0.57 0.63
A340/300	295	275	0.932	1991	Boeing B737-800	80	180	0.44
A340/200	239	275	1.151	1992	g	••		••••
A340/600	380	372	0.979	2001	CRJ-100	24	49	0.49
A340/500	313	372	1.188	2002	CRJ-700 FK10	35 45	70 101	0.50 0.45
A380	525	560	1.067	2007	DHC8-400	45 29	78	0.45

Source: Airbus Official Website

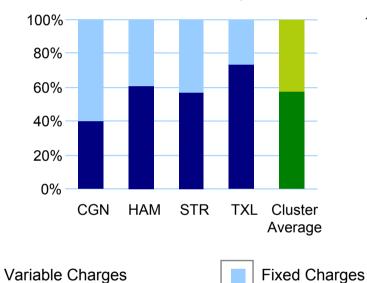
Source: ADV

• More investigation needed

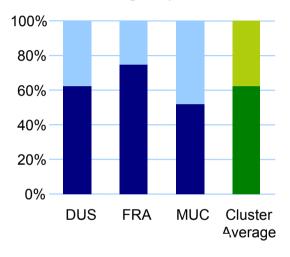


Reasons – Countervailing Power of Airlines

- Traditional thinking is airports are natural monopolies
- However:
 - If the sunk cost characteristic is clear
 - It is not clear at which point the economies of scale stop to exist
- Moreover:
 - Germany has a dense network of airports (average distance 77km)
 - And very good roads and rail infrastructure
- Additionally:
 - Airlines large, sophisticated companies might be able to threaten convincingly with a withdrawal from an airport



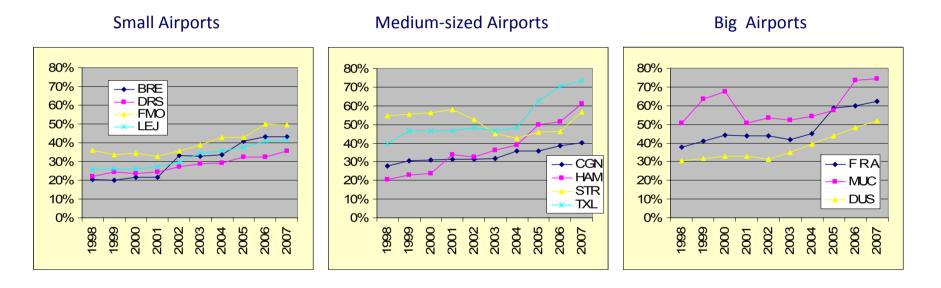
Correlations – Scale, Levels



2007

Medium-sized Airports

Big Airports



• It is clear that smaller airports tend to have a lower variability

Correlations – Scale, Trends

1998 - 2007

• Small airports tend to increase the share of variable charges at a slower pace compared to medium- and big-sized airports

A320-Familie -

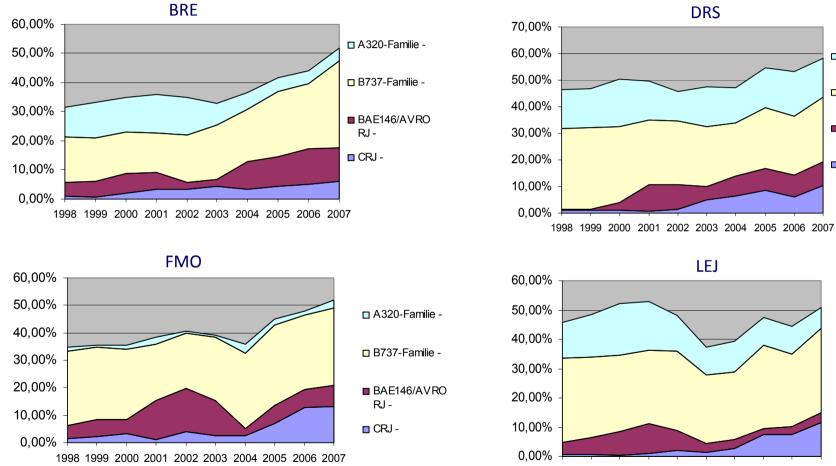
B737-Familie -

BAE146/AVRO

A320-Familie -

B737-Familie -

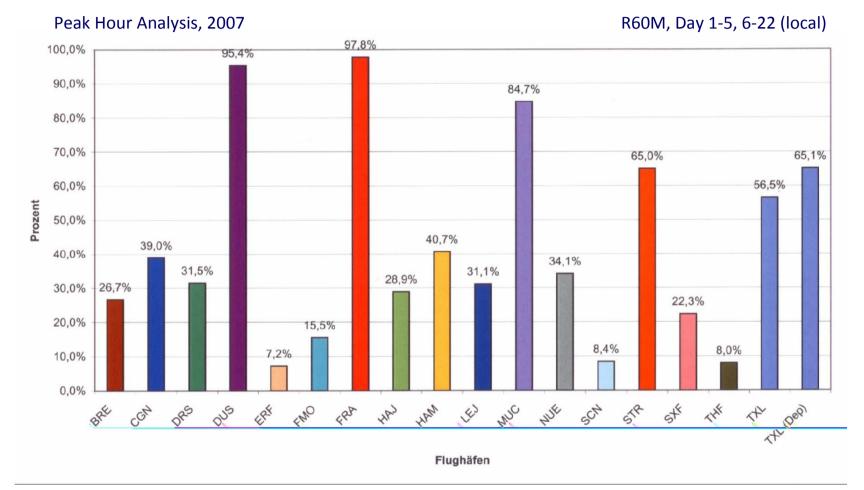
BAE146/AVRO


RJ -

CRJ -

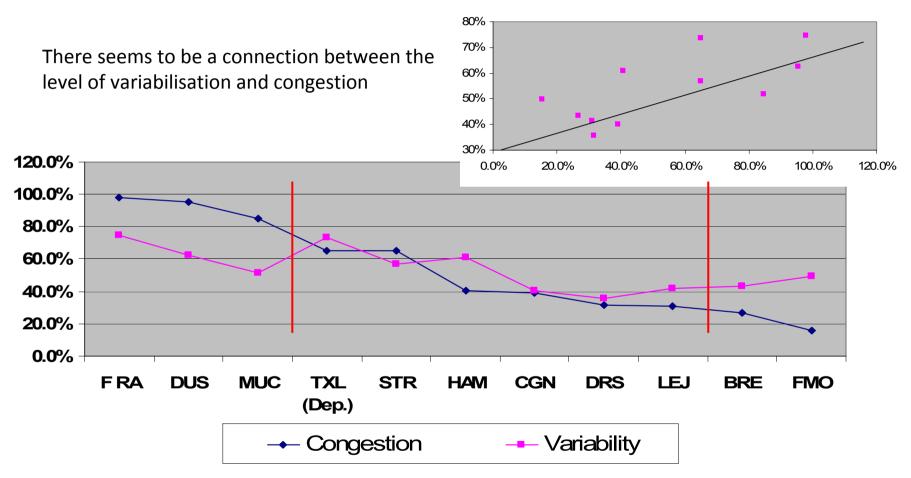
RJ -

CRJ -


Correlations – Scale, Fleet Mix Changes

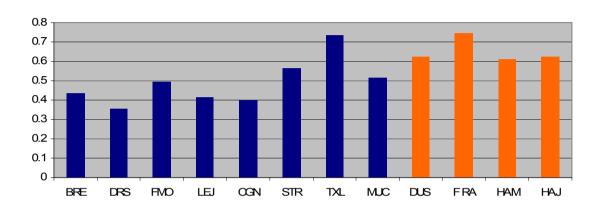
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

- The share of smaller aircrafts (here, especially CRJ) is expading
- This could counterbalance the desire of small airports to hurry up with the process of variabilization


Congestion – Congestion I

Source: fhkd – German Airport Coordinator

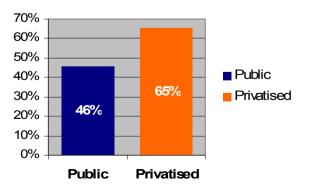
Correlations – Congestion II


However,

congested airports (to certain degrees) are only 4 or 5 in Germany, the others have free capacities.

So, in the end, is there any real connection between the two?

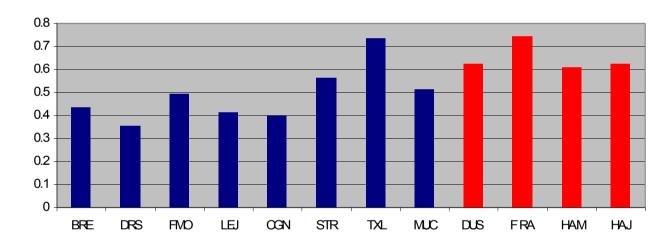
Correlations – Ownership



- It seems that there is a connection also between the ownership structure and the level of variability
- All the partially privatised airports are in the high variability club
- •The only exception is TXL

BUT,

Public	Partially Privatised			
BRE	DUS			
DRS	FRA			
FMO	HAM			
LEJ	HAJ			
CGN				
STR				
TXL				
MUC				



Correlations – Regulation

• The partially privatised airports have, all of them, a price-cap regulation

Cost-based	Price-cap
BRE	DUS
DRS	FRA
FMO	HAM
LEJ	HAJ
CGN	
STR	
TXL	
MUC	

- It becomes increasingly difficult to distinguish the exact correlation
- Possible reason: ownership and regulation are linked
- However, variabilization seems more directly connected to regulation

Correlations – Cost structure

- The assumption is that airports simply adapted to the cost structure
- Data availability constraints did not allow us to test this statement, but:

Cost structure changed, so charges followed the same development

or

Doubtless! It is hard to believe that cost structure changed so much in only 10 years **II.** Cost structure did not change much, just that now airports having new incentive scheme, adapted to that structure

More credible. But, if so, what were the factors that did not allow them to adapt in the past?

Effects – General

- As long as passenger demand will increase, everyone would have only to profit out of this situation
- Risk of an exogenous demand shock
 - Short-term, risk may exist as SLF decreases, and smaller aircrafts
 - Medium-term, it is expected that airlines restore SLF.
- More sensible to market fluctuations means more market risk
 - May increase the over-all cost of raising capital, needed for infrastructure developments

GERMAN AIRPORT	GERMAN AVIATION	GAP
PERFORMANCE	BENCHMARKING	A GAP

Effects – Demand Shock

	Shock Airport	0%	5%	10%	15%	20%	25%	
2005 (or 2004)	BER	1.16	1.12	1.09	1.05	1.01	0.98	Total Revenues
	BRE	1.06	1.02	0.99	0.95	0.91	0.88	
	DRS	0.83	0.79	0.75	0.71	0.67	0.63	Total
	DUS	1.27	1.23	1.20	1.17	1.13	1.10	Costs
	FRA	1.17	1.13	1.10	1.06	1.03	0.99	
	HAM	1.16	1.12	1.09	1.05	1.01	0.98	
	MUC	1.02	0.99	0.97	0.94	0.91	0.88	
	STR	1.10	1.07	1.03	0.99	0.96	0.92	
	CGN	1.23	1.19	1.14	1.09	1.05	1.00	

Source: Own made calculations

Assumptions: Only aeronautical revenues are affected

The impact on the different segments of demand (LCC, charter, business) equally distributed

Opinions about variabilization

- Graham Anne, 2003
 - Such situation is desirable as airport charges become more related to the revenue stream of the airlines
- Klenk Michael, 2004
 - Airports should bring a greater participation to the market risk, by incorporating more of the real market conditions
- We are not saying that this is necessarily a bad thing.
 But, in all cases, it should not be ignored.

Conclusions

- Identifying the precise reason for airport charges variabilization proves to be a challenging task
- But, most probably there is a constellation of factors which concurred to create such a development
- Risk The main concern is how to avoid critical situations. When conditions are bond the decisional outcome may be suboptimal
- Further research
 - Look also at LCC an indicator of competition
 - Interesting to study also the situation in other countries
 - Find better risk estimations

- What are other hypothesis to test?
- Is variabilization a natural process?
 Should IATA adapt?

Thank you for your attention.

A Joint Project of: University of Applied Sciences Bremen Berlin School of Economics (FHW) Int. University of Applied Sciences Bad Honnef

Contact:

Jürgen Müller (FHW Berlin) jmueller@fhw-berlin.de Marius Barbu (FHW Berlin) ms.barbu@gmail.com David Ben Heinz (FHW Berlin) davidbenheinz@googlemail.com

Comments and Feedback from the Audience (1)

- Seat Loading Factor of 80% might be too high (this is usually valid for charter operators, but for others is less). Recommendations:
 - Use a lower SLF
 - Use SLF different each year (try get SLF yearly estimations)
 - Or apply a sensitivity analysis and see how variabilization changes (70-80%)
- Leisure and Charter did not like variabilization under a price-cap regime
- To test the aircrafts become lighter hypothesis need the declared data of airlines, about aircraft characteristics analysis relevant
- True LCC airports (HAHN) may have 100% passenger charges. Construct a separate sample of LCC airports and analyze them.
- Price elasticity doesn't allow airlines to pass on the whole tax-box.
- IATA is already aware of variabilization and acts accordingly. After all, every shift in charges structure goes through them. IATA acts as a second regulator.
- With variabilization, if an airline fails, it is easier for another airline to replace it. Does this represent a diminished risk? (Risk of a failing airline)

Comments and Feedback from the Audience (2)

- Leave out scale correlation. Better try to test competition. But how to assess competition?
- Other hypothesis to test
 - Share of main carrier at the airports. Correlate with the level of variabilization.
- Congestion. Differentiate between full-time excess demand and temporary excess demand
- From the congestion correlation chart it comes out that current charges structure do not contribute to allocate capacity efficiently.
- How to phase out small aircrafts? ie. Fraport used min. tonnage
- Price-cap regulation survived only in HAM. The others discontinued (did not extend the contracts). It matters a lot how you design the formula.
- HAM, probably the most successful airport in Germany. The price-cap formula worked. But also consider the investment environment in which HAM exists.