Enchovenancer

Benchmarking Airport Efficiency Regional Airport Terminal Processes

Roel Martens BSc, Frank van der Zwan PhD, Air Transport & Operations 7-3-2011

Challenge the future

EindhovenAirport

Content

Research initiation

- Eindhoven Airport Challenge
- Literature Study

Constructing the tool

• Key Efficiency Indicators and Benchmark Methodology

Applying the tool

• Results

Discussing the tool

• Conclusions and Recommendations

1.

Research Initiation

Challenge by Eindhoven Airport Some Numbers

- Rapid increase in passengers
 - 2001: 0.3M pax
 - 2009: 1.7M pax

EindhovenAirport

TUDelft

- 2010: 2.1M pax (expected)
- Ryanair main growth driver
 - 2002: 7 flights/week
 - 2010: ~100 flights/week (summer season)
- Low fare carrier (LFC) pax / total pax = 85% (2009)

Challenge by Eindhoven Airport Problem Statement

- Rapid growth of airport entirely linked to LFC
- LFC exercise tough airport performance demands
- While generally refusing to pay high airport charges
- Route termination by higher yield 'traditional' airlines

Downward pressure on the airport's aviation revenues!

Strategy by Eindhoven Airport Operational Excellence

Continuous improvement of operational cost/quality ratio

- Delivering generic high quality service for lowest possible cost
- Resulting in best practice regional airport

TUDelft

EindhovenAirport

6

Research

• Developing a benchmark tool to evaluate the efficiency of the operational processes in the terminal.

• Aim

- Quantify process efficiency at participating airports
- Identify best practices amongst participating airports
- Add external optimization path for airport management

Research Constraints -1

Management decision tool for airport management

- Complete picture of passenger processes in terminal
 - Decision units \rightarrow Handling and security processes
- Process resource efficiency level of detail
 - Daily operations benchmark
 - Managerial influenceable parameters only
- Equal comparisons \rightarrow equal processes
- Sample group of (comparable) regional airports

8

Research

Constraints -2

- Process efficiency driven
 - No cost, quality, strategy influences
- Transparancy for all participating airports
- Limiting data to non-competitive, observable data

Literature Study Filling the gap-1

- 32 airport benchmark studies investigated
 - Incl. Gillen and Lall, Barros, Graham, Neufville, Müller, Pels etc.
- All studies consider one unit: complete airport
- Sample groups:
 - Airports in selected country:
 - Airports in two countries:
 - Major/hub airports:

e.g. Martín and Román (2006, Spain)

- e.g. Müller (2009, Germany and UK)
- e.g. Pels et al. (2003, Europe)

Research constraints:	Processes Sample	= decision unit = Regional Airports

Literature Study Filling the gap-2

• No airport or terminal process benchmarks, but:

Indicator	Times used in 32 studies
Total number of passengers	ALL
Total number of aircraft movements	25
Invested capital / cost of capital	14
Total number of employees	13
Number of runways	12
Total labor cost	12
Total sales	13
Terminal area	12
Operational cost	9
aeronautical / non-aeronautical sales	8
Number of gates	8
Airport area	7
Number of luggage reclaim belts /	
reclaim hall area	5
Runway area	4
Total runway length	5
Total cost	5
Number of car parking spots	4
Apron area	3
Number of check-in desks	4
Number of aircraft parking stands	3
Profitability	2
Departure lounge area	1

Literature Study Filling the gap-3

- Some indicators of process level of detail are found, although not coupled to process
- Most relevant indicators found in
 - Gillen and Lall (1997)
 - Pels et al. (2003)
 - Müller et al. (2009)

Area	Number of
Apron	Aircraft parking stands (1x)
Departure lounge	Check-in desks (2x)
Reclaim Hall	Gates (2x)
	Luggage reclaim belts (2x)

2.

Constructing the tool

Methodology Research

Step 1: Defining standard terminal processes

Step 2: Deriving (input and output) efficiency drivers per process

Step 3: Selecting sets of Key Efficiency Indicators (KEI)

Step 4: Benchmarking between sample airports

- On individual weighed KEI level
- On process level from set of KEI

Literature Study (steps 1,2) Observations of processes (steps 1,2) Expert opinions via discussion sessions (steps 1,2,3)

Methodology Benchmark tool

Airport benchmarking literature

- Partial Fraction Analysis (PFA)
- Data Envelopment Analysis (DEA)
- Stochastic Frontier Analysis (SFA)

• PFA with Surface Measure of Overall Performance (SMOP)

- Easy interpretable radar plot with KEI at axes
- Total enclosed area is measure for total efficiency
- Real, unbiased picture of measured KEI
- One plot for each process at each measured time period
- Small sample group (three airports), large decision unit group (processes)

Terminal Processes

TUDelft

EindhovenAirport

Terminal Processes Efficiency Drivers

- Input efficiency drivers
 - "Infrastructure"
 - "Equipment"
 - "Labor"

(*dedicated terminal area*) (*number of desks, lanes, gates, reclaim belts*) (*number of staff*)

Type efficiency driver	Peak measurement	Year measurement
Infrastructure	Dedicated terminal area [m ²]	Dedicated terminal area [m ²]
Equipment	Maximum # in use	Total # available
Labor	Maximum # in use	Total fte available

Terminal Processes

An example: Check-in/drop-off process

Complete Check-in/drop-off process at the airport

Passenger checks information screen for desk number → passenger moves to check-in/drop-off terminal area <START TERMINAL PROCESSES> <START PROCESS>

- \rightarrow passenger joins queuing line
- \rightarrow passenger arrives at desk
- \rightarrow staff handling company:
- performs passenger check-in process
- performs luggage check-in process
- checks hand luggage for airline requirements
- issues boarding pass and bag tag receipt
- provides flight information

<END PROCESS>

ŤUDelft

Terminal Processes Efficiency Drivers Selection

Infrastructure
Equipment
Labor

Process	Output efficiency driver(s)	Input efficiency drivers
Passport Control	TotalPax_nonschengen	Area
		Desks
		Staff
Waiting	DepPax	Departure lounge area
		Commercial use area
Boarding (terminal)	DepPax	Area
	DepFlights	Gates
		Staff
Arrival (terminal)	ArrPax_luggage	Area
	ArrFlights	Reclaim belts
		Lost & found Staff

Key Efficiency Indicators (KEI) The Concept -1

- Indicates efficiency level of resource usage only
 - Process quality and cost are neglected (basic quality assumed)
 - Airport management strategy is neglected

• $KEI = \frac{output \ efficiency \ driver}{input \ efficiency \ driver}$; max. 2 outputs, 3 inputs

- Is directly influenceable on (daily) operations level
 - Via input efficiency drivers

Delft

Is readily obtainable for benchmarking!

KEI (efficiency) **# KPI** (performance, quality)

• Relative efficiency benchmarking

Airport sample group {A, B, C}

j decision making units (processes, j = 1, 2, ..., 8)

Each process described by *i* inputs (i = 1, 2, 3)

Each process described by 1 or 2 outputs

 $KEI_{i,i} = KEI$ with input *i* for process *j* (1 output)

 $\text{KEI}_{i,i-1}$ / $\text{KEI}_{i,i-2}$ = KEI input *i*, process *j* (2 outputs)

• Most efficient KEI in process *j* for input *i* :

EindhovenAirport 🕨

Delft

$$KEI_{i,j}^{*} = max\left\{\left(KEI_{i,j}\right)_{A'}\left(KEI_{i,j}\right)_{B'}\left(KEI_{i,j}\right)_{C}\right\} \qquad ; \quad KEI_{i,j}^{*} \equiv 1$$

- Say $KEI_{i,j}^*$ at airport A: $(KEI_{i,j})'_A = KEI_{i,j}^* = 1$
- The relative efficiency value for {B,C} are:

$$\left(KEI_{i,j}\right)'_{B} = \frac{\left(KEI_{i,j}\right)_{B}}{\left(KEI_{i,j}\right)_{A}}$$

$$\left(KEI_{i,j}\right)_{C}^{\prime} = \frac{\left(KEI_{i,j}\right)_{C}}{\left(KEI_{i,j}\right)_{A}}$$

EindhovenAirport 🕨

TUDelft

• For all processes (j = 1, 2, ..., 8) for peak and year periods:

KEI level benchmark

Sample group in radar plot with {KEI'_{i,i}}_{A,B,C} at axes for each output

Process level benchmark

EindhovenAirport 🕨

TUDelft

- SMOP calculation for process radar plot
- Largest surface area = "best-in-class" efficiency
- Weighed against { $KEI'_{i,j}$ } = 1,1,1 (for *i* = 1,2,3)

PEAK - Pax output

PEAK - Flights output

Eindhoven Airport				Charler	oi BS Airp	ort		Rottere	dam TH <mark>A</mark> i	rport	
i	PEAK - pax	output	KEI ['] i,1-1	i	PEAK - pax	output	KEI ['] i,1-1	i	PEAK - pax	c output	KEI ['] i,1-1
1	Pax/area	0,81	0,619	1	Pax/area	1,30	1,000	1	Pax/area	0,81	0,621
2	Pax/staff	88,52	1,000	2	Pax/staff	58,67	0,663	2	Pax/staff	49,83	0,563
3	Pax/desk	88,52	1,000	3	Pax/desk	65,19	0,736	3	Pax/desk	49,83	0,563
	PEAK - flights output		KEI ['] i,1-2		PEAK - flights output		KEI ['] i,1-2		PEAK - flights output		KEI ['] i,1-2
1	Flights/area	0,008	0,545	1	Flights/area	0,012	0,830	1	Flights/area	0,014	1,000
2	Flights/staff	0,857	1,000	2	Flights/staff	0,535	0,624	2	Flights/staff	0,500	0,583
3	Flights/desk	0,857	1,000	3	Flights/desk	0,595	0,694	3	Flights/desk	0,500	0,583
	Total -pax	0,649	74,6%		Total -pax	0,548	62,9%		Total -pax	0,295	33,9%
	Total -flights	0,607	69,7%		Total -flights	0,443	50,9%		Total -flights	0,437	50,2%

SMOP: max surface 3 axes $\{1,1,1\} = 0.87$

Key Efficiency Indicators (KEI) KEI Selection by Process

j	Two outputs	Process
1	Х	Check-in/drop-off
2		Information/service
З		Pre-security check
4		Security screening
5		Passport control
6		Waiting
7	Х	Boarding (terminal)
8	Х	Arrival (terminal)

i	Process	KEI	
1	Check-in/drop-off	Pax/area	KEI _{1,1-1}
		Pax/staff	KEI _{2,1-1}
		Pax/desk	KEI _{3,1-1}
		r	
		Flights/area	KEI _{1,1-2}
		Flights/staff	KEI _{2,1-2}
		Flights/desk	KEI _{3,1-2}

j Process	KEI		j	Process	KEI	
6 Waiting	Pax/area Comm.area/area	KEI _{1,6} KEI _{2,6}	4	Security screening	Pax/area Pax/staff Pax/lane	KEI _{1,4} KEI _{2,4} KEI _{3,4}

3.

Applying the tool

Sample Group

TUDelft

EindhovenAirport 🕨

• Questionnaire efficiency drivers processes:

- Peak (during summer 2010)
- Year (August 2009-July 2010)

Benchmarking Airport Terminal Processes Efficiency

28

Total movements			
(8/09-7/10)	14.764	33.121	13.305
Total pax (8/09-7/10)	1.944.280	4.628.625	969.936
Pax/flight	132	140	73
Pax via check-in	50%	40%	92%
Peak DEP.FLIGHTS	9	11	6
	(6x FR / 2x W6 / 1x XQ)	(10x FR / 1x JAF)	(3x HV / 3x VG)

Results Peak (Check-in/drop-off)

Results Year (Check-in/drop-off)

Benchmarking Airport Terminal Processes Efficiency 30

Results Peak vs. Year (Check-in/drop-off)

Peak

	Check-in/Drop-off	
	PAX output	
1.	Eindhoven Airport	74,6%
2.	Charleroi Brussels South Airport	62,9%
3.	Rotterdam The Hague Airport	33,9%
_	FLIGHTS output	
1.	Eindhoven Airport	69,7%
2.	Charleroi Brussels South Airport	50,9%
3.	Rotterdam The Hague Airport	50,2%

Year

Check-in/Drop-off	
PAX output	
1. Charleroi Brussels South Airport	93,4%
2. Rotterdam The Hague Airport	79,1%
3. Eindhoven Airport	50,7%
FLIGHTS output	
1. Charleroi Brussels South Airport	100,0%
2. Rotterdam The Hague Airport	44,7%
3. Eindhoven Airport	33,7%

4.

Discussing the tool

Conclusions

• Tool quantifies efficiency of terminal processes using KEI

- At detail levels: KEI (PFA) & Process (SMOP)
- Best practices for each process and KEI are identified
 - But: only best practices amongst the 3 sample airports
- Strategic improvement fields identified by non-best-practice scores
 - Allows for collaboration between airports
- *Agenda* : discussion meeting EIN/CRL/RTM further interpretation results

Discussion and Recommendations

• Good scoring KEI may indicate bad process quality (within concept KEI)

- Crowded areas, queuing lines due to few staff or desks
- But processes are comparable and quality differences mentioned

First time terminal process benchmark

- Coupling to (internal) KPI and cost structure -> complete picture
 Difficultiesy (Istaining platate (abatity) (KP)) articlipating airports)
- Mone eperatrice patiegremery esatisfies field bistices ults and method!
- Fte for staff in year measurement difficult to achieve

Delft

- Peak measurement method (max # in use) lacks time variable
- More comparable sample airports (preferably with Ryanair)

Questions?

-lud

-

♥ Delft EindhovenAirport ►

Arrivals

BRUSSELS SOUTH CHARLEROI AIRPORT

Rotterdam The Hague

Airpor

noven/